Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs MIT PRIMES Conference

Nicholas Guo
Mentor: Guangyi Yue

May 21, 2016

Hyperplane Arrangements

Definition

- Begin with the Euclidean space $\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}$.
- An affine hyperplane is the set of points in \mathbb{R}^{n} satisfying an equation of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$.
- A hyperplane arrangement is simply a finite collection of affine hyperplanes.
- A hyperplane arrangement is central if all of its hyperplanes pass through at least one point.

Familiar Examples in \mathbb{R}^{2}

Hyperplanes are lines in \mathbb{R}^{2}

11 pieces

Cake cut for maximum \# pieces Hyperplane arrangement in a general position

8 pieces

Pizza cut through a center
A central hyperplane arrangement

An Example in \mathbb{R}^{3}

A central hyperplane arrangement of 6 planes in a 3-dimensional space.

An Arrangement and Its Intersection Poset

Poset for Cake cut

Poset for Pizza cut

The Möbius Function for Posets

Definition

Let P be a locally finite poset. Define a function $\mu=\mu_{P}: \operatorname{Int}(P) \rightarrow \mathbb{Z}$, called the Möbius function of P, by the conditions:

$$
\begin{gathered}
\mu(x, x)=1, \forall x \text { in } P \\
\mu(x, y)=-\sum_{x \leq z<y} \mu(x, z), \forall x<y \text { in } P .
\end{gathered}
$$

- The second condition can be be written:

$$
\sum_{x \leq z \leq y} \mu(x, z)=0, \forall x<y \text { in } P .
$$

Möbius Function Values and the Characteristic Polynomial

Definition

The characteristic polynomial of a hyperplane arrangement is defined by:

$$
\chi_{\mathcal{A}}(t)=\sum_{x \in L(\mathcal{A})} \mu(\hat{0}, x) t^{\operatorname{dim}(x)}
$$

$$
\begin{gathered}
\chi_{\mathcal{A}}(t)=t^{2}-4 t+6 \\
\text { "Cake-cut" arrangement }
\end{gathered}
$$

"Pizza-cut" arrangement

Regions

Definition

- A region of the arrangement \mathcal{A} is a connected component of the complement

$$
\mathbb{R}^{n}-\cup_{H \in \mathcal{A}} H
$$

- $r(\mathcal{A})$ denotes the total number of regions, and $b(\mathcal{A})$ denotes the number of bounded regions.

Theorem (Zaslavsky)

The number of regions and bounded regions can be found as:

$$
\begin{gathered}
r(\mathcal{A})=\left|\chi_{\mathcal{A}}(-1)\right| \\
b(\mathcal{A})=\left|\chi_{\mathcal{A}}(1)\right|
\end{gathered}
$$

Region Counting Again!

11 pieces

8 pieces

$$
\chi_{\mathcal{A}}(t)=t^{2}-4 t+6
$$

$$
r(\mathcal{A})=(-1)^{2}-4(-1)+6=\mathbf{1 1} \quad r(\mathcal{A})=(-1)^{2}-4(-1)+3=\mathbf{8}
$$

$$
b(\mathcal{A})=1^{2}-4(1)+6=\mathbf{3} \quad b(\mathcal{A})=1^{2}-4(1)+3=\mathbf{0}
$$

Another Example of a Hyperplane Arrangement

Let \mathcal{A}_{n} be the arrangement in \mathbb{R}^{n} with hyperplanes

$$
\begin{array}{lr}
x_{i}=0 & \forall i \\
x_{i}=x_{j} & \forall i<j \\
x_{i}=2 x_{j} & \forall i \neq j \\
x_{i}=3 x_{j} & \forall i \neq j
\end{array}
$$

Find $\chi_{\mathcal{A}_{n}}(t)$.

$$
\begin{aligned}
& \chi_{\mathcal{A}_{2}}(t)=(t-1)(t-6) \\
& \chi_{\mathcal{A}_{3}}(t)=(t-1)\left(t^{2}-17 t+78\right) \\
& \chi_{\mathcal{A}_{4}}(t)=(t-1)\left(t^{3}-33 t^{2}+386 t-1608\right) \\
& \chi_{\mathcal{A}_{5}}(t)=(t-1)\left(t^{4}-54 t^{3}+1151 t^{2}-11514 t+45840\right)
\end{aligned}
$$

Calculating $\chi_{\mathcal{A}_{n}}(t)$ becomes more difficult for higher dimensions.

The Finite Field Method

The characteristic polynomial of a Rational Arrangement can be found alternatively:

Theorem

Let \mathcal{A} be any subspace arrangement in \mathbb{R}^{n} defined over the integers and q be a large enough prime number, then:

$$
\chi_{\mathcal{A}}(q)=\#\left(\mathbb{F}_{q}^{n}-\cup_{H \in \mathcal{A}} H\right)=q^{n}-\cup_{H \in \mathcal{A}} H
$$

Equivalently, identifying \mathbb{F}_{q}^{n} with $[0,1, \ldots, q-1]^{n}$,

$$
\chi_{\mathcal{A}}(q)=\# \text { of points with integer coordinates in }[0, q-1]^{n}
$$

which do not satisfy mod q the defining equations of any of the subspaces in \mathcal{A}.

The Finite Field Method: An Example

			x_{1} 0	1	2	3	4	5	6	7	8	9	10
For the hyperplane arrangement in \mathbb{R}^{n}	${ }_{2}$	0	X	X	X	X	X	X	X	X	X	X	X
		1	X	X	X				X				
		2	X	X	X		X						
$x_{i}=0 \quad \forall i$		3	X			X			X	X			
		4	X		X		X				X		
$x_{i}=x_{j} \quad \forall i<j$		5	X					X			X		X
$x_{i}=2 x_{j} \quad \forall i \neq j$		6	X	X		X			X				
		7	X			X				X		X	
		8	X				X	X			X		
		9	X							X		X	X
		10	X					X				X	X

$$
\chi_{\mathcal{A}}(p)=(p-1)(p-n-2)_{n-1} \quad \mathbb{F}_{p}^{2}=[0, p-1]^{2}, p=11
$$

$$
\text { where }(x)_{m}=x(x-1) \cdots(x-m-1)
$$

Applications of Hyperplane Arrangements

Hyperplane arrangements have increasing applications in:

- biology,
- mathematical physics,
- statistical economics,
- topology of collision-free robot motion planning,
- machine learning and deep neural networks for Artificial Intelligence,
- combinatorics and graph theory,

Independent Sets of $G(V, E)$

Definition

In a graph, an independent set is a set of vertices, no two of which are adjacent, or connected by an edge.

Example:
Hyperplane arrangement \mathcal{A}_{n} in \mathbb{R}^{n}

$$
\begin{array}{ll}
x_{i}=0 & \forall i \\
x_{i}=x_{j} & \forall i<j \\
x_{i}=2 x_{j} & \forall i \neq j \\
x_{i}=3 x_{j} & \forall i \neq j
\end{array}
$$

How many 3-element independent sets of G on vertices [10] with edges $\mathrm{ij}: j=2 i \bmod 11$ (red line) and $j=3 i \bmod 11$ (blue line)?

Counting Independent Sets of Symmetric Graphs

A simple problem

Choose n labeled points from a circular arrangement of $p-1$ points (cycle graph $\left.C_{p-1}\right)$. What is the number of n-element independent sets?

Example: C_{10}

$$
\begin{array}{ll}
x_{i}=0 & \forall i \\
x_{i}=x_{j} & \forall i<j \\
x_{i}=x_{j}+1 & \forall i \neq j
\end{array}
$$

Solution

The number of n-element independent sets is the characteristic polynomial:

$$
\chi_{n}(p)=(p-1)(p-n-2)_{n-1}
$$

where $(x)_{m}=x(x-1) \cdots(x-m-1)$.

Independent Sets of Graph with Disjoint Union of Orbits

Theorem (Prior Conjecture)

Let $a=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be a set of coprime integers. For an integer $k \gg 1$, let $G(k)$ be the graph with vertex set $\mathbb{Z} / k \mathbb{Z}$ and edges ij if $i \equiv a_{r} j$ $\bmod (k+1)$ for some r. Let G be the disjoint union $G\left(n_{1}\right) \cup G\left(n_{2}\right) \cup \cdots \cup G\left(n_{s}\right)\left(n_{1}+1, n_{2}+1, \ldots, n_{s}+1\right.$ all primes $\left.\gg 1\right)$, then the number of n-element independent sets of G depends only on n, m, and $\sum n_{i}$.

Invariance of Characteristic Polynomial

Lemma

Let \mathcal{A}_{n} be the arrangement in \mathbb{R}^{n} with hyperplanes

$$
\begin{aligned}
& x_{i}=0 \\
& x_{i}=x_{j} \\
& x_{i}=a_{1} x_{j} \\
& x_{i}=a_{2} x_{j} \\
& \ldots \\
& x_{i}=a_{m} x_{j}
\end{aligned}
$$

$$
\begin{array}{r}
\quad \forall i \\
\forall i<j \\
\forall i \neq j \\
\forall i \neq j \\
\forall i \neq j
\end{array}
$$

For a fixed $m, \chi_{\mathcal{A}_{n}}(t)$ is independent of a_{i} 's as long as they are coprime.

- We proved this by using generating functions.

Graph with Disjoint Union of Orbits

Theorem

Let $a=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a set of positive integers. For an integer $n \gg 1$, Let $G(a, n)$ be the graph with vertex set $\mathbb{Z} / n \mathbb{Z}$ and edges ij if $i-j \equiv a_{r}$ $\bmod n$ for some r. For some $n_{1}, n_{2}, \ldots, n_{s} \gg 0$, let G be the disjoint union $G\left(a, n_{1}\right)+G\left(a, n_{2}\right)+\cdots+G\left(a, n_{s}\right)$. Then the number of I-element independent sets of G depends only on a, I, and $\sum n_{i}$.

- We proved this similarly by employing its corresponding characteristic polynomial of hyperplane arrangements.

Future Research

- Generalization:
$G=G_{n_{1}}+G_{n_{2}}+\cdots+G_{n_{k}}$ or $\mathbb{Z} / n_{1} \mathbb{Z} \cup \mathbb{Z} / n_{2} \mathbb{Z} \cup \cdots \cup \mathbb{Z} / n_{k} \mathbb{Z}$ be a graph which is the disjoint union of k graphs $G_{n_{i}}$ which has n_{i} vertices. What kind of such graph has the property that the number of n-element independent sets depends solely on n and $\sum_{i} n_{i}$?

Acknowledgments

Many thanks to :

- Guangyi Yue, my mentor
- Prof. Richard P. Stanley for suggesting this project
- Dr. Tanya Khovanova, Prof. Pavel Etingof and Dr. Slava Gerovitch
- My parents
- MIT PRIMES USA

